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Reverse Engineering of Planar Objects Using GAs
(Kejuruteraan Balikan Objek Menyatah Menggunakan GA)
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ABSTRACT

An automatic approach, for reverse engineering of digitized hand printed and electronic planar objects, is presented 

of shape parameters in the description of rational cubic functions. 
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ABSTRAK

Kaedah automatik untuk kejuruteraan balikan bagi objek cetakan tangan terdigit dan elektronik dibentangkan. Kaedah 

ini berguna untuk mevektor bentuk generik. Fungsi kubik rasional digunakan untuk mencari penyelesaian optimum 

masalah pemadanan lengkung menggunakan teknik pengkomputeran algoritma genetik lembut yang mencari nilai yang 

sesuai bagi parameter bentuk untuk menerangkan fungsi rasional kubik.

INTRODUCTION

Reverse engineering, which deals with a number of 
activities, has been mounting immensely in the last decade. 
The reverse engineering procedure usually is to break apart 
some object or system in order to explore its technical 
principles and mechanism so that an improved or duplicate 
system can be developed, when no original mechanical 
drawing, documentation or computer model are existed. 
Generating computer aided design (CAD) model from 
scanned digital data is used in contour styling which needs 
to adopt some curve or surface approximation scheme.

optimal curve to the data extracted from the boundary 
of the image (Hou & Wei 2002; Kirkpatrick et al. 1983; 
Sarfraz 2004; Sarfraz & Khan 2004; Sarfraz & Rasheed 
2007). Fitting curves to the data extracted by generic 
planar shapes is the problem which is immensely worked 
on during the last two decades. It still grabs the attention 

its demands in the industry. There are several advantages 
of curved representation of planar objects, for example, 
transformations like scaling, shearing, translation, rotation 
and clipping can be applied on the objects very easily. 

in order to reproduce curves from exact geometric data 
obtained by bitmap images; consequently it is always 

outline capturing techniques using different spline models 
have been introduced by researchers like Be´zier splines 
(Sarfraz & Rasheed 2007), B-splines (Ho¨ lzle 1983), 
Hermite interpolation (Sarfraz & Razzak 2002) and 

rational cubic interpolation (Sarfraz & Khan 2000, Sarfraz 
et al. 2012). There are several other outline capturing 
techniques (Cabrelli & Molter 1990; Davis 1979; Itoh & 
Ohno 1993; Plass & Stone 1983; Sarfraz 2004; Sarfraz 
et al. 2005; Sarfraz & Khan 2002, 2004; Sarfraz & Raza 
2001, 2002; Schneider 1990; Sohel et al. 2005; Tang et 
al. 2001) available in the current literature and most of 

Plass & Stone 1983; Sarfraz & Khan 2002) and error 
minimization (Cabrelli & Molter 1990; Sarfraz & Khan 
2000, 2004). Sarfraz et al. (2004) in their outline capturing 
scheme, calculated the ratio between two intermediate 
control points and used this to estimate their position. This 
caused reduction of computation in subsequent phases of 
approximation. Few other techniques include use of control 
parameters (Sarfraz & Razzak 2002), genetic algorithms 
(Sarfraz & Raza 2001) and wavelets (Tang et al. 2001). This 
paper is oriented to the rational spline method of Sarfraz 
et al. (2012) and extends the work in detail and elaborates 
in more extensive way. 
 The computing method, analogous to the amazing 
aptitude of the human mind to reason and learn in an 
environment of uncertainty and imprecision, is called soft 

solutions, soft computing- based optimization methods 
acknowledge the presence of imprecision and uncertainty 
present in optimization. Soft computing techniques such as 
fuzzy logic (FL), neural networks (NN), genetic algorithm 
(GA), simulated annealing (SA), ant colony optimization 
(ACO) and particle swarm optimization (PSO) have received 
a lot of attention of researchers due to their potentials 
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to deal with highly nonlinear, multidimensional and ill-
behaved complex engineering problems (Chandrasekaran 
et al. 2010). 
 The genetic algorithm has been very powerful tool 

the process of natural evolution based on the ‘survival of 

from boundary of the image. The process of vectorizing 
outlines of the images consists of several mathematical 
and computational stages like: Extracting boundary of the 
bitmap image, detecting corners from the boundary and 

COUNTOUR EXTRACTION AND SEGMENTATION

to extract data from the boundary of the bitmap image 
or a generic shape. Capturing boundary or outline 
representation of an object is a way to preserve the 
complete shape of an object. The objects in an image can 
also be represented by the interior of shape. Chain coding 
for boundary approximation and encoding was initially 

attention over the last three decades. Chain codes represent 
the direction of the image and help to attain the geometric 
data from outline of the image. Extracted boundaries of 
the bitmap images given in Figures 7(a), 8(a) and 9(a) are 
in Figures 7(b), 8(b) and 9(b), respectively.
 The second step in reverse engineering of planar 
objects is segmentation of object boundary before curve 

process. Secondly, each shape consists of natural break 
points (like four corners of a rectangle) and quality of 
approximation can be improved if boundary is subdivided 
into smaller pieces at these points. These are normally the 
discontinuous points to which we do not want to apply 
any smoothing and like to capture them as such. These 
points can be determined by a suitable corner detector. 
Researchers have used various corner detection algorithms 
for outline capturing (Avrahami & Pratt 1991; Beus & Tiu 
1987; Chetrikov & Zsabo 1999; Sarfraz et al. 2006; Teh & 
Chin 1989). The method proposed in (Chetrikov & Zsabo 
1999) was used in this paper. Number of contour points 
and detected boundary points for different images is given 
in Table 1. Detected corners of the boundaries shown in 
Figures 7(b), 8(b) and 9(b) can be seen in Figures 7(c), 
4(c) and 5(c), respectively.

RATIONAL CUBIC FUNCTION

A piecewise rational cubic parametric function P C1[t
i
, 

t
i+1], with shape parameters v

i
, w

i
  i = 1, …, n is used 

boundary of the bitmap image, the rational cubic function 
 t [t

i
, t

i+1], i = 1, …, n, as follows:
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at the knots 
 
t
i
, i = 1, …, n + 1. The effect of the shape 

parameters v
i
, i = 1, …, n, on the curve is shown in 

Figures 1 and 2. Moreover, for  v
i
, w

i
 = 3, i = 1, …, n + 1 

(1) reduces to cubic Hermite interpolation. If v
i
, wi 

then the rational cubic function (1) converges to linear 
interpolant L

i
(t) = (1 – ) F

i
 + 

i+1 as shown in Figure 
1. Furthermore it can be observed that the function (1) 
may have two sub cases as: 

Case 1: v
i
 = w

i
, i = 1, …, n  

Case 2: v
i
 w

i
, i = 1, …, n.   

 In this paper both the cases were discussed for the 
v

i
 = w

i
, i = 1, …, n (1) can be written in 

the form:
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where V

i
 and W

i
 are given in (2) and  R

j
( ;v

i
), j = 0,1,2,3 

are rational Bernstein-Bezier weight functions such that 
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where  R
j
(

i
,w

i
), j = 0,1,2,3 are rational Bernstein-Bezier 

weight functions such that  V
i and W

i
 are 

given in (2).

PARAMETERIZATION

The number of parameterization techniques can be found in 
literature, for instance uniform parameterization, linear or 
chord length parameterization, parabolic parameterization 
and cubic parameterization. In this paper, chord length 
parameterization is used to estimate the parametric value 
t associated with each point. It is as follows:
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 It can be observed that t
i
 is in normalized form and 

varies from 0 to 1.

A distance based choice [Sarfraz 2004] of tangent vectors  
D

t
’s at F

i
´s 

For open curves:

 

For close curves:

 

where

 

GENETIC ALGORITHM

Genetic Algorithms (GAs) are search techniques based on 
the concept of evolution. In simple words, every solution, 

a bit string, called a chromosome. A Genetic Algorithm 
(Goldberg 1989) is applied with its three genetic search 
operations (selection, crossover and mutation) to create a 
population of chromosomes with the purpose of improving 
the quality of chromosomes. 
 A GA allows a population composed of many 

function). In GA, a cost function generates an output from 
a set of input variables (a chromosome). The cost function 
may be a mathematical function, an experiment or a game. 
The objective is to modify the output in some desirable 

FIGURE 1. Demonstration of rational cubic function (3.1) for case 1

 FIGURE 2. Demonstration of rational cubic function (1) for case 2
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variables.
 The GA
of variable values to be optimized; variable values are 
represented in binary so the binary GA works with bits. The 
GA works with the binary encodings, but the cost function 
often requires continuous variables. Whenever the cost 
function is evaluated, the chromosome must be decoded. 
An example of a binary encoded chromosome is shown 
in Figure 3.

As a result of crossover operator the offspring contain parts 
of both the parents. Crossover operator is demonstrated in 
Figure 4. 

FIGURE 3. Example of binary encoding

 The GA starts with a group of chromosomes known as 
the population. Next, the variables are passed to the cost 
function for evaluation. Natural selection process leads 

with the highest cost. Natural selection occurs at each 
generation or iteration of the algorithm. Deciding how 
many chromosomes to keep is somewhat arbitrary. Letting 
only a few chromosomes survive to the next generation 
limits the available genes in the offspring. Keeping too 
many chromosomes allows bad performers a chance to 
contribute their traits to the next generation. We often keep 
50% in the natural selection process.
 Another approach to natural selection is called 
thresholding. In this approach all chromosomes that have 
a cost lower than some threshold survive. The threshold 
must allow some chromosomes to continue in order to 
have parents to produce offspring. Otherwise, a whole new 

that pass the test. At first, only a few chromosomes 
may survive. In later generations, however, most of the 
chromosomes will survive unless the threshold is changed. 
An attractive feature of this technique is that the population 
does not have to be sorted.
 In process of matchmaking, two chromosomes are 
selected from the mating pool of survived chromosomes to 
produce two new offspring. There are several schemes for 
parent selection like roulette wheel, tournament selection 
and random pairing. The next step after selecting parents 
is mating to create one or more offspring.
 Commonly used form of mating is called crossover 
operator which deals with two parents that produce two 
offspring. A crossover point is randomly selected between 

parent passes its binary code to the left of that crossover 

its binary code to the left of the same crossover point to 
second offspring. Further, the binary code to the right of the 

FIGURE 4. Example of crossover operator

FIGURE 5. Example of mutation operator

 The process of GA described is iterated and would 
be repeated until the achievement of best solution for the 
problem. Flowchart of GA is shown in Figure 6.

OPTIMAL RATIONAL CUBIC FUNCTION

function with the help of GA (Goldberg 1989) is discussed. 
 Suppose for i = 1,…,n, P

i,j
 = (x

i,j
, y

i,j
), j = 1,2,…,m

i  

 be the given data points, then the squared sums S
i
´s  

of distance between P
i,j

´s and their corresponding 
parametric points P(t

j
)´s  on the curve are determined as 

i = 1,…,n where u

in reference to chord length parameterization explained 
in Section 3.1. 

Case 1: When w
i
 = v

i
, then rational cubic (1) would have 

only one shape parameter say v
i

to given data, such values of parameter v
i
, are required so 

that the sums S
i
´s are minimal. Genetic Algorithm is used 

start with initial population of values of v
i
 chosen randomly. 

Successive application of search operations like selection, 

 Another way of creating new chromosomes is mutation 
in which new traits can be introduced to chromosomes that 
are not present in the original population. A single point 
mutation changes a 1 to a 0 and vice versa is shown in 
Figure 5.
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crossover and mutation to this population leads to optimal 
values of v

i
.

Case 2: When w
i
 v

i
, then in the description of rational 

cubic (1) there would be two parameters w
i  

and v
i  

to be 
optimized so that the sums S

i
´s attain their minimum values. 

For this purpose GA is applied.

INITIALIZATION

Once we have the bitmap image of a generic shape, the 
boundary of the image can be extracted using the method 
described in Section 2. After the boundary points of the 
image are found, the next step is to detect corner points 
to divide the boundary of the image into n segments as 
explained in Section 2. Each of these segments is then 
approximated by interpolating function described in 
Section 3. 

After an initial approximation for the segment is obtained, 
Genetic Algorithm helps to obtain better approximations to 
achieve optimal solution. The tangent vectors at knots are 
estimated by the method described in Section 3.3.

BREAKING SEGMENT

improvement may not be satisfactory. In that case, we 
subdivide the segment into smaller segments at points 
where the distance between the boundary and parametric 

termed as intermediate points. A new parametric curve is 

8(g), 8(h), (9(g) and 9(h). Table 2 gives details of number 
of intermediate points achieved during different iteration 

in case 1 and case 2.

FIGURE 6. Flow diagram of Genetic Algorithm

TABLE 1. Details of digital contours and corner points

Image Name # of contours # of contour points # of initial corner points

Fork 1 673 15

Plane 3 915+36+54 28

Fish 1 975 31
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Algorithm

Step 1:  Input the data points
Step 2:  Subdivide the data, by detecting corner points 

using the method mentioned in Section 2
Step 3:  Compute the derivative values at the corner points 

by using formula given in Section 3.3
Step 4:  Fit the rational cubic function of Section 3, to the 

corner points found in Step 2
Step 5: If the curve, achieved in Step 4, is optimal 

then go to Step 7, else find the appropriate 

TABLE 2. Number of corner points together with number of intermediate points for iterations 1, 2 and 3 of GA

Image Name # of initial corner 
points

# of intermediate points in cubic interpolation with threshold value 3
Itr.1 Itr.2 Itr.3 Final itr.

Case1 Case2 Case1 Case2 Case1 Case2 Case1 Case2
Fork 15 0 0 10 9 17 17 28 25
Plane 28 0 0 21 19 31 28 39 37
Fish 31 0 0 18 18 31 30 35 38

FIGURE 7. Demonstration of rational cubic function (3.1) 
using GA for case1 and case 2

break/intermediate points (points with highest 
deviation) in the undesired curve pieces. Compute 
the best optimal values of the shape parameters 

v
i
 and w

i
. Fit rational cubic function in Section 3 

to these intermediate points
Step 6:  If the curve, achieved in Step 5, is optimal then 

go to Step 7, else add more intermediate points 
(points with highest deviation) and go to Step 3

Step 7:  Stop

DEMONSTRATION

implemented on different images. Figure 11(a) represents 
the original image, (b) shows outline of the image, (c) 

curve to the corners along with boundary of the image (e) 
st iteration using Genetic 

Algorithms together with corner points and boundary 
for case 1 and case 2 of rational cubic function 3.1, 

th 
iteration using Genetic Algorithms together with corner 
points breakpoints and boundary for case 1 and case 2 
of rational cubic function 3.1, respectively. 
 Figures 8 and 9 can also be described in similar 
fashion. Figures 10, 11 and 12 present comparison of both 
the cases discussed in Section 3 of rational cubic function 

solid line represents minimum cost for case 1 in different 
iterations of GA, whereas dashed line shows the minimum 

it can be noticed that case 2 gives better results than case 
1 as far as minimum cost is concerned. Moreover it can 
be seen in Table 2 that number of breakpoints in case 2 
is less than as in case 1 for different iterations of GA in 
different images. So it may be concluded that proposed 
scheme gives slightly better results in case when it is 
applied using rational cubic with two parameters.
 Figures 13-17 show behaviors of best, worst and 

running GA again and again. It can be observed in Figures 
13 and 15 that the best, worst and mean values of cost 
function coincide after iteration 6, whereas Figure 11 
depicts the case where they never become equal. While 
Figure 16 shows that the functions start decreasing 
initially and become equal at 7th iteration but after that 
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FIGURE 8. Demonstration of rational cubic function (3.1) 
using GA for case1 and case 2 FIGURE 9. Demonstration of rational cubic function (3.1) 

using GA for case1 and case 2

FIGURE 
generation for case 1 and case 2
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FIGURE
 for case 1 and case 2

FIGURE
for case 1 and case 2

all the functions increase in 8th iteration and then seem 
to be constant onwards. However Figure 17 presents that 
all the functions coincide very early like in 2nd iteration. 
 Figures 16-20 give the percentage of stopping 
criteria met by GA
respectively and the parameters used while applying GA 
are given in Table 3. 

 

CONCLUSION

A scheme for reverse engineering of planar objects is 
presented which vectorizes the generic shapes. A rational 
cubic function with one shape parameter and two shape 

values of the parameters in the description of the rational 
cubic function. The method proposed starts with initial 
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FIGURE

FIGURE

FIGURE
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FIGURE 16. Divergent behaviour of best, worst 

FIGURE 

TABLE 3. Parameters of GA

Sr. No. Name
1 Population size 25
2 Genome length 15
3 Selection rate 0.5
4 Mutation rate 0.01



  1177

FIGURE 18. Stopping crieteria met by GA for image of plane

FIGURE 19. Stopping crieteria met by GA for image of fork
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the parameters which can assure best optimal curve to the 
data extracted by bitmap images. A comparison between 
both the cases of rational cubic is also done which proves 
that the rational cubic with two parameters gives slightly 
better results as far as minimum error and breakpoints are 
concerned. The scheme presented is fully automatic and 

3D models in future.
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